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of Screen Content and 3D synthesized Images
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Abstract—In this paper, we address problems associated with
free-energy-principle based image quality assessment (IQA) al-
gorithms for objectively assessing the quality of Screen Content
(SC) and 3D synthesized images and also propose a very fast and
efficient IQA algorithm to address these issues. These algorithms
separate an image into predicted and disorder residual parts
and assume disorder residual part does not contribute much to
the overall perceptual quality. These algorithms fail for quality
estimation of SC images as information of textual regions in
SC images are largely separated into the disorder residual part
and less information in the predicted part and subsequently,
given a negligible emphasis. However, this is in contrast with the
characteristics of human vision. Since our eyes are well trained
to detect text in daily life. So, our human vision has prior infor-
mation about text regions and can sense small distortions in these
regions. In this paper, we proposed a new reduced-reference IQA
algorithm for SC images based upon a more perceptually relevant
prediction model and distortion categorization, which overcomes
problems with existing free-energy-principle-based predictors.
From experiments, it is validated that the proposed model has a
better capability of efficiently estimating the quality of SC images
as compared to the recently developed reduced-reference IQA
algorithms. We also applied, the proposed algorithm to judge
the quality of 3D synthesized images and observed that it even
achieves better performance than the full-reference IQA metrics
specifically designed for the 3D synthesized views.

Index Terms—Screen content images, 3D synthesized images,
prediction, image quality assessment (IQA), distortion catego-
rization, textual region, human vision.

I. INTRODUCTION

Recently, Screen Content (SC) images [1] are used in sever-
al applications, such as virtual screen sharing [2], online gam-
ing, remote education, etc. These SC images contain regions
with both text and pictures, thus have different characteristics
to natural images [1]. With this in view, researchers have
aimed to develop compression methods specifically for SC
images and videos [3-5], as the existing algorithms performed
poorly on SC images/videos. The importance of SC images
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is demonstrated by the fact that separate proposals were
called to efficiently compress SC images, in the extension
of HEVC [6]. With the increasing applications and usage of
SC images/videos, methods to accurately and automatically
quantify their quality are required.

Similar to SC images, free viewpoint videos (FVV) have
aroused much attention because of its broad range of utility
values in the fields of entertainment, medical applications,
remote education, etc. In free viewpoint videos, the need is
to produce fresh viewpoint frames from the adjacent multiple
views [7]. The techniques which create those new view-
points are called the Depth-Image-Based-Rendering (DIBR)
techniques [7]. These newly generated views are affected
by several distortions and geometric distortion is the most
important among them. Contrary to the commonly occurring
structure distortions in natural images, the geometric distortion
has very different characteristics [7], [8] and is thus difficult
to measure. The overall quality of a whole free viewpoint
video sequence will be heavily degraded even though a few
DIBR-synthesized views contained therein are polluted. As a
consequence, an accurate quality assessment method of 3D-
synthesized images is fairly important.

During the last few decades, many image quality assessment
(IQA) algorithms have been proposed to assess the perceptual
quality of natural images. These IQA algorithms are broad-
ly divided into three categories, namely full-reference (FR),
reduced-reference (RR) and no-reference (NR). In [9], Wang et
al. proposed an FR metric namely, SSIM which is based upon
the structural similarity between the reference and distorted
images. In [10] and [11], the authors assume that the human
visual system (HVS) performs two different ways to perceive
the image quality, i.e., near-threshold and suprathreshold. The
authors of [12] and [13] proposed FR algorithms using the
gradient similarity and deviation of gradient similarity, respec-
tively. For RR algorithms, the authors of [14] and [15] used the
structural degradation model and orientation selectivity based
visual pattern’s, respectively. The authors of [16] proposed
an RR algorithm for stereoscopic images using the binocular
perceptual information. In [17], Soundrarajan et al. proposed
an RR algorithm namely, RRED using the entropy differencing
of original and reference image. As for the studies of NR IQA,
some state-of-the-art quality metrics were developed based
on early human vision modeling [18] or some natural scene
statistics (NSS) models [19-20]. However, they all were found
to take effects on the IQA of natural scene images only, but
fail to faithfully assess the quality of SC images.

Recently, researchers have also paid attention to the quality
assessment of SC images and the authors of [1] and [21]
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modified the SSIM [9] algorithm to better match the char-
acteristics of the SC images. In [22], Wang et al. proposed
an IQA algorithm for SC images based upon the gradient
magnitude and blur functions. While Gu et al. used saliency
detection [23] and machine learning approach [24] to quantify
the quality of SC images. Similar to the SC images, researchers
have paid attention to the quality assessment of 3D synthesized
images [8] and authors of [25] and [26] used morphological
wavelets and morphological pyramids, respectively for this
purpose. To the best of our knowledge, no RR IQA algorithm
has been proposed for quality evaluation of both SC and 3D
synthesized images. In some applications, such as image/video
transmission, complete information about the reference signal
is unavailable, which makes FR methods impractical. For NR
methods, without any information about the reference, it is
difficult to achieve satisfactory quality prediction performance.
It is more practical to send limited information about the
reference to the decoder side to perform a quality assessment.
With this in view, we propose a new RR algorithm, specifically
for SC images.

Free-energy-principle has been utilized in several IQA al-
gorithms in recent years. Zhai et al. [27] proposed an RR
algorithm based upon the residual uncertainty; Wu et al.
proposed FR [28] and RR [29] metrics, assuming that the
residual uncertainty and primary visual information cause
different level of visual sensations and along the same line,
authors of [30], [31] and [32] proposed blind IQA algorithms
based on the free-energy principle and learning.

The internal generative mechanism [28] of our brain tries
to predict the primary visual information and to discard
uncertainty. Generally, these free-energy-principle based IQA
algorithms separate an image into predicted and disorder resid-
ual parts using auto-regressive (AR) modeling. The disorder
residual part refers to residual errors between the interest
image and its predicted image. They also assume that human
vision can mostly sense distortions in the predicted part and
disorder residual part does not contribute much to the per-
ception of image quality. Unfortunately, when applying such
prediction methods on SC images, most of the information
of textual regions are separated into the disorder residual part
and consequently, assume textual regions are not significantly
important for judging the quality of the SC images.

Contrary to this assumption, human vision has prior infor-
mation about the text, and can easily perceive small distortions
in textual regions. Existing free-energy based IQA methods
underestimate the contribution of the textual region and thus
cannot perform effectively for SC images. In order to over-
come such problem, we propose an IQA algorithm using a
local predictor which separates most of the information of
the textual region into the predicted part and build an RR
IQA method that gives importance to the distortion in the
textual regions during the estimation of the quality score for
SC images.

II. PROPOSED ALGORITHM

In this paper, we propose an RR IQA algorithm for SC
images based upon the prediction and distortion categorization.

In the proposed algorithm, we predict the SC image in such
a way that most of the information of the textual region are
separated in the predicted part and textual region can play an
important role when evaluating the quality.

A. Free-energy-principle-based IQA models for SC images
The free-energy-principle based IQA algorithms [28], [27],

[29] separate an image into two parts: the predicted part, which
is mainly the visual structural information, and the disorder
residual part. These algorithms assume that the degradation
on the predicted part has a significant impact on perceptual
quality, while the disorder residual part has only a small
influence on the overall perceptual quality.

These algorithms rely on the fact that the correlation be-
tween the central pixels and their neighboring pixels is quite
high for pixels which contain primary visual information and
they can be efficiently predicted using ordinary least squares
(OLS) based autoregressive (AR) modeling. The OLS based
AR modeling assumes that center pixel and its neighboring
pixels in a local window are stationary and it can efficiently
predict perceptually important pixels. In other words, the pix-
els which can not be efficiently predicted using OLS based AR
modeling have more information in the disorder residual part
and distortions in such regions do not cause much discomfort
to human vision.

These assumptions are valid for natural images, but for SC
images, the correlation among neighboring pixels is low [33]
as compared to natural images and pixels in the neighboring
local window are not stationary. In such cases, the assumptions
of geometric duality and stationarity are missing [34] and
consequently, AR model using OLS based predictors cannot
predict textual regions and separate more information of the
textual regions to the disorder residual part. In order to support
these arguments the predicted and disorder residual parts of an
SC image using the predictor adopted by IGM [28] (or RRVIF
[29], as the same predictor is used in both of the algorithms)
and FEDM [27], are shown in Fig. 1. From the second and
third rows of Fig. 1, it can be observed that the AR modeling
based predictors are not able to efficiently predict the text
regions and these algorithms separate most of the information
of the textual regions to the disorder residual part.

Contrary to the assumption made by the existing free-
energy-principle based IQA algorithms, our eyes are well
trained to see text in daily life and human vision has prior
information about the text and is therefore quite sensitive to
text and textual regions. Above arguments and importance of
textual regions in assessing the quality of SC, images can be
supported by the fact that

1) The human vision selects the text region as the salient
part [35], [36].

2) From subjective evaluation [1], it has been validated
that correlation between quality of text and overall
quality is higher than the correlation between quality
of picture and overall quality, which suggests that the
textual part of an SC image contributes more to the
overall perceptual quality than the pictorial part.

First, we give an example to show that human vision
is more sensitive to distortions in textual regions than the
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Fig. 1: The inability of AR modeling based predictors to predict the textual regions in existing free-energy principal based
IQA algorithms. Here, Fig. 1. (a), (b) and (c) are the original image and distorted images due to Gaussian noise with σ = 20
and 40. The first and second row in red, green and blue blocks represent the predicted part and disorder residual part of Fig.
1. (a)-(c) using the predictors used in IGM [28], FEDM [27] and the proposed algorithm, respectively.

texture regions. Fig. 2 shows a cropped SC image from the
SIQAD [1] database and a cropped natural image from TID
database [37] and these distorted versions due to Gaussian
noise contamination and JPEG compression. From Fig. 2, it
can be seen that even a small distortion in the textual region
can be easily perceived by human vision. At the same time,
distortions in the textural regions in a natural image are not
easily perceivable by our human vision, which validates the
assumption of free-energy-principle-based IQA algorithms for
natural images. This example suggests that our human vision
is trained to sense such small distortions in text and textual
regions play an important role in assessing the quality of
images.

B. Prediction based IQA for SC images:

In the proposed algorithm, our goal is to separate most of
the information of the textual regions into the predicted part
than in the disorder residual part so that the textual region
can significantly influence the overall perceptual quality of SC
images. Generally, SC images contain sharp edges and thin
lines [33], [32], [38] and local predictors are able to predict
efficiently, as compared to block based [33] predictors using
least squares or global predictors. With this view, we propose
to use an observation-model based bilateral filter (OBF) [34]
to separate an SC image into predicted and disorder residual
parts. The ith pixel of predicted part (X̂d), which is associated

to a distorted image (Xd), is obtained as

X̂di =
Xdiλ+

∑
k∈Ni

ωkiAki
λ+

∑
k∈Ni

ωki
, (1)

where Aki and wki are the pixels in the neighboring 3 × 3
window Ni of the ith pixel and corresponding weights, respec-
tively, while λ is the parameter which controls the prediction
accuracy. In this work, we choose value of λ to be 0.1. These
weights (wk) are calculated based upon the pixel gradient and
radiometric distance, as suggested by Jakhetiya et al. [34],
[38]. The separated disorder residual part of distorted image
is obtained as follows

Rdi = |X̂di −Xdi |. (2)

The separated predicted and disorder residual parts of
textual regions using the OBF are shown in the last row
of Fig. 1. From this figure, one can observe that the OBF
predicts textual regions efficiently and it separates most of the
information of the textual region to the predicted part and, in
turn, significantly consider it when assessing the quality of the
SC images.

In the literature, a strength of the edge structures (sharpness)
have shown great success in extracting the primary visual
information [1], [28], [29], [39] of an image. For this reason,
we also use the sharpness similarity between the distorted
and reference images to estimate the level of degradation to
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Fig. 2: SC and natural images showing the sensitivity and insensitivity of human vision to perceive distortions in the text and
textural regions. (a) and (d) original SC and natural images, (b) and (e) distorted images due to Gaussian noise (with MSE =
17.3) and (c) and (f) JPEG compressed images (with MSE = 26.5).

Fig. 3: The dependency of the standard deviation of the residual image (σ(Rd)) and standard deviation of the sharpness (σ(Ed))
with an increasing level of distortion for five images from SIQAD database with seven levels of distortions for Gaussian noise,
Gaussian blur, motion blur, JPEG, and J2K compression, respectively.

the reference image. The sharpness of the distorted image is
estimated as follows:

Ed = max
k=1....4

Magk(Xd) (3)

Magk(Xd) = |Xd ? Fk|, (4)

Here, ? represents the convolution operator and Fk repre-
sents the high-frequency filters in four directions (horizontal,
vertical, diagonal and anti-diagonal) to calculate the sharpness
value. More details about these four filters Fk can be found
in [29]. The edge structure of an image deteriorates with
the addition of distortions, and in turn, image sharpness
decreases. With this view, the sharpness of an image can be
used to determine the quality of the image. In the proposed
algorithm, standard deviation is used to pool sharpness of
the reference (σ(Er)) and distorted (σ(Ed)) images. The
dependency of σ(Ed) with the increasing distortion for 35
distorted images (five images from the SIQAD database [1]
with seven increasing levels of distortions) is shown in Fig. 3
(b). From this figure, one can observe that the σ(Ed) decreases
with the increment of all types of distortions. So as the

difference between the sharpness of the distorted and reference
images increases, the perceptual quality of the distorted image
reduces.

On the other hand, with the increment of low-frequency
distortions (such as Gaussian blur, motion blur, JPEG and J2K
compression), the standard deviation of the disorder residual
image (Rd = |Xd−X̂d|) decreases, as such kinds of distortions
make an image smooth. Contrary to this, with a Gaussian
noise distortion increment, the high-frequency parts in the
distorted image increased, which behave as outliers [34]. These
outliers in the distorted image are difficult to predict [34]
and consequently, the standard deviation of the residual image
(σ(Rd)) increases, as shown in Fig. 3 (a).

The simplest way is to utilize function used in SSIM [9]
to obtain final quality score S but function used in SSIM
treats a different kind of distortions equally. The researchers
in just noticeable difference [39] area have shown that high-
frequency distortions cause more sensation to human vision
as compared to low-frequency distortions and high-frequency
distortions more degrade the overall perceptual quality of an
image than the low-frequency distortions. So, the impact of
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high-frequency distortions (i.e., Gaussian noise) should be
distinguished from the low-frequency distortions (Gaussian
and motion blur, JPEG and J2K compression) for quantifying
the quality of an SC image. With this view, the final quality
score using the proposed algorithm is calculated as

S =


[
σ(Rr)
σ(Rd)

]α
×
[
σ(Ed)
σ(Er)

]β
if σ(Rd) ≥ σ(Rr)

[
σ(Rd)
σ(Rr)

]γ
×
[
σ(Ed)
σ(Er)

]β
else.

(5)

In equation (5), α should attain a higher value that γ,
as Gaussian noise distortions impact the overall perceptual
quality more than the low-frequency distortions. The proposed
algorithm requires only two reference data to assess the quality
of an image, namely the standard deviation of the sharpness
(σ(Rr)) and standard deviation of the disorder residual error
(σ(Er)). We choose to quantize σ(Rr) and σ(Er) using a 16-
bit quantizer, so the proposed algorithm requires to send only
32-bit information about the reference image to the decoder
side during transmission.

In (5), α, β and γ and in (1) λ are the fixed parameters,
which need to be determined reliably. Big data is a very
important concept, which has been broadly used in various
directions [40-44]. Particularly, similar to a recent work [24],
we have first collected thousands of “webpage” and “screen
snap” images from the “Google Images” website, and then
maintained 1,000 high-quality images with human eyes’ obser-
vations. We apply the aforesaid 1,000 high-quality SC images
as original references to generate above 100,000 images as
training samples with six typical distortion types, which in-
clude Gaussian noise (GN), Gaussian blur (GB), motion blur
(MB), contrast change (CC), and JPEG and JPEG2000 (JP2K)
compressions, and 15 distortion levels for each type. Next,
we apply the state-of-the-art SQMS metric [23] to label those
distorted SC images. The parameters used in our proposed
quality metric, α, β, γ, and λ, are determined to make our
metric have the highest correlation with the SQMS metric in
terms of prediction monotonicity. Note that the above training
images are exactly content-independent of those in the SIQAD
database, and this means those parameters are quite reliable
and generalized. Based upon the above described independent
experiments, the values of α, β, γ, and λ values are chosen
as 0.5, 0.2, 0.1 and 1.9, respectively.

III. EXPERIMENTAL RESULTS

In order to verify our proposed algorithm, we applied it
to the recently developed screen image quality assessment
database (SIQAD) [1] to judge the quality of SC images.

A. IQA Metrics used for Comparison and Evaluation Method-
ology

The SIQAD database contains 20 reference SC images
and corresponding 980 distorted images which are distorted
due to seven prevailing distortions: Gaussian noise, Gaussian
blur, motion blur, contrast change, JPEG compression, J2K

compression, and layer segmentation based coding. In SIQAD
database each image has 7 different level of distortions. The
proposed reduced-reference algorithm is compared with five
well-known full-reference IQA algorithms, SSIM [9], IGM
[28], GSIM [12], SQMS [23] and VIF [45]; and five recently
developed reduced-reference algorithms: OSVP [15], FEDM
[27], RRED [17], RRVIF [29] and RQMSH [22].

The proposed algorithm is evaluated in terms of three crite-
ria, namely the Pearson linear correlation coefficient (PLCC),
Spearman rank-order correlation coefficient (SRCC), and root
means squared error (RMSE), as suggested by the Video
Quality Expert Group (VQEG) [46]. A better IQA algorithm
should attain a lower value of the RMSE and higher value
of the PLCC and SRCC. In order to remove the non-linearity
of the objectively predicted scores, a five parameterized non-
linear logistic function is used which is defined as:

f(Qs) = ∆1 ×
(

1

2
− 1

1 + e∆2(Qs−∆3)

)
+ ∆4Qs + ∆5. (6)

In equation (6), Qs represents the predicted scores obtained
from the IQA algorithms and f(Qs) represents the respective
mapped scores. While ∆i (i ∈ 1, 2, 3, 4, 5) are the model
parameters which are estimated using a non-linear regression.

B. Performance Comparison

Simulation results (in terms of PLCC, SRCC, RMSE and
running time) for the SIQAD database using the proposed
algorithm, five FR metrics, and five RR metrics are presented
in Table I. From Table I, it can be observed that the proposed
algorithm performs significantly better than the other RR
metrics (OSVP, FEDM, RRED, and RRVIF). At the same time,
the proposed algorithm achieves a better performance than
several FR IQA metrics, except the SSIM [9] and GMSD [13]
algorithms but these algorithms require complete information
about the reference SC image.

It is also interesting to note from Table I that the proposed
algorithm performs much better than the existing IQA algo-
rithms based upon the free-energy-principle (IGM [28], FEDM
[27] and RRVIF [29]), which are designed for assessing the
perceptual quality of natural images. From Table I, one can
observe two important aspects:

1) The proposed algorithm achieves PLCC value of 0.7264,
while IGM, FEDM, and RRVIF algorithms are only able
to achieve 0.6422, 0.5388, 0.5758, respectively. These
simulation results validate the assertion that the exist-
ing free-energy-principle based IQA algorithms separate
most of the information of the textual regions to the
disorder residual part and in turn assume that the textual
regions do not significantly affect the overall perceptual
quality. While the proposed algorithm separates most of
the information of the textual region in the predicted part
and consequently, considers distortions in these regions
during the estimation of the quality score.

2) The running time of the existing free energy principle
based IQA algorithms is quite high as compared to the
proposed algorithm, as these algorithms use least-square
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TABLE I: Comparison results of the proposed algorithm with five FR (SSIM [9], IGM [28], GSIM [12], SQMS [23] and
VSI [45]) and five RR algorithms (OSVP [15], FEDM [27], RRED [17], RRVIF [29], and RQMSH [22]) in terms of PLCC,
SRCC and RMSE for the SIQAD database. The last row represents the running time (in seconds) of corresponding algorithm
to predict the quality of an SC image. Here N is the number of pixels in the SC image.

Full-Reference (FR) Reduced-Reference (RR)
Distortions SSIM IGM GSIM SQMS VSI OSVP FEDM RRED RRVIF RQMSH Prop.

No. of scalers N N N N N 9 2 9 2 1 2

PLCC

GN 0.8806 0.9017 0.8448 0.9004 0.8836 0.7571 0.7793 0.8963 0.8657 0.8876 0.8831
GB 0.9014 0.8858 0.8831 0.9126 0.8504 0.8794 0.7840 0.8939 0.8830 0.8698 0.8960
MB 0.8060 0.7655 0.7711 0.8673 0.7658 0.8186 0.5020 0.8105 0.7350 0.8135 0.6328
CC 0.7435 0.8203 0.8077 0.8027 0.7734 0.8116 0.7170 0.7347 0.7567 0.6873 0.7559

JPEG 0.7487 0.7980 0.6778 0.7857 0.7149 0.4231 0.4365 0.7857 0.6912 0.5965 0.7594
J2K 0.7749 0.8324 0.7242 0.8263 0.7498 0.0939 0.1317 0.7673 0.7647 0.5948 0.7952
LSC 0.7307 0.8287 0.7218 0.8126 0.7457 0.4269 0.0794 0.8215 0.7321 0.5701 0.6898

Overall 0.7561 0.6422 0.5663 0.8872 0.5568 0.6341 0.5388 0.5557 0.5758 0.7555 0.7264

SRCC

GN 0.8694 0.8819 0.8404 0.8860 0.8655 0.7607 0.7675 0.8810 0.8479 0.8727 0.8750
GB 0.8921 0.8766 0.8796 0.9149 0.8495 0.8730 0.7660 0.8808 0.8715 0.8595 0.8865
MB 0.8041 0.7620 0.7753 0.8695 0.7658 0.8140 0.4795 0.8058 0.7214 0.8107 0.6295
CC 0.6405 0.6777 0.7148 0.6948 0.6459 0.7093 0.5120 0.5601 0.6493 0.5031 0.6678

JPEG 0.7576 0.7936 0.6796 0.7893 0.7196 0.3998 0.4010 0.7700 0.6803 0.5913 0.7464
J2K 0.7603 0.8211 0.7125 0.8194 0.7299 0.1802 0.1286 0.7581 0.7588 0.5758 0.7994
LSC 0.7371 0.8372 0.7145 0.8290 0.7419 0.4062 0.0911 0.8290 0.7347 0.5658 0.7063

Overall 0.7566 0.6400 0.5551 0.8803 0.5381 0.5855 0.4348 0.5358 0.6082 0.7534 0.7168

RMSE

GN 7.0679 6.4484 7.9811 6.4906 6.9846 9.7455 9.3476 6.6144 7.4666 6.8695 6.9993
GB 6.5701 7.0423 7.1210 6.2041 7.9849 7.2244 9.4213 6.8042 7.1231 7.4888 6.7398
MB 7.6967 8.3654 8.2788 6.4722 8.3620 7.4680 11.245 7.6158 8.8157 7.5610 10.0678
CC 8.4116 7.1933 7.4160 7.5008 7.9743 7.3480 8.7683 8.5337 8.2239 9.1368 8.2348

JPEG 6.2295 5.6634 6.9085 5.8124 6.5705 8.5141 8.4540 5.8123 6.7908 7.5417 6.1139
J2K 6.5691 5.7604 7.1675 5.8539 6.8765 10.347 10.303 6.6655 6.6970 8.3552 6.3013
LSC 5.8283 4.7749 5.9046 4.9731 5.6846 7.7156 8.5051 4.8647 5.8123 7.0095 6.1773

Overall 9.3676 10.972 11.798 9.6039 11.890 11.069 12.059 11.901 11.703 9.3784 9.8375
Run Time 0.038 8.395 1.369 0.063 0.233 0.321 205.596 0.644 10.535 0.141 0.849

TABLE II: Comparison of the statistical significance of our algorithm and 10 IQA models on the SIQAD database.

SIQAD SSIM [9] IGM [28] GSIM [12] GMSD [13] VSI [45] OSVP [15] FEDM [27] RRED [17] RRVIF [29] RQMSH [22]
S 0 +1 +1 0 +1 +1 +1 +1 +1 0

based autoregressive modeling for separating the SC
image into predicted and disorder residual part.

We have also examined the proposed algorithm with the
recently proposed RQMSH algorithm [22] and observed that
the proposed algorithm performs slightly inferior to RQMSH.
The proposed algorithm achieves 0.7264 value of PLCC, while
RQMSH algorithm achieves 0.7555 value of PLCC. At the
same time, both the algorithms are statistically similar, as
shown in Table II. From Table I, we can observe that the
proposed algorithm performs better than the RQMSH, except
for the Gaussian noise and motion blur. As authors of [22]
have specifically incorporated the Gaussian and motion blur
kernels to judge the quality of Gaussian noise and motion
blurred images. By this motivation, we might incorporate the
similar kernels with the proposed algorithm towards a large
performance gain.

C. Statistical Significance

We assume that the prediction errors (between predicted
scores and subjective scores) of IQA algorithms follow a
Gaussian distribution and with this view, we use F-Test to
check the statistical significance between the proposed al-

gorithm and other IQA algorithms. Assuming a significance
level of 0.05, a value S = +1 or S = -1 suggests that the
proposed algorithm is statistically better or worse than the
other IQA algorithm, respectively. While S = 0, shows that
the proposed algorithm is statistically comparable to other IQA
algorithm. The results of the statistical significance comparison
are reported in Table II. From Table II, one can observe that
the proposed algorithm is statistically better than the most
of the other IQA algorithms and comparable to the SSIM
and GMSD metrics. Although, proposed reduced-reference
IQA algorithm achieves slightly worse PLCC as compared
to the two full-reference IQA algorithms, namely, SSIM and
GMSD but proposed the algorithm and these algorithms are
statistically comparable.

At the same time, an efficient RR IQA metric should use
a lesser amount of data of reference image to accurately
estimate the quality of the distorted image. The proposed
algorithm, OSVP, FEDM, RRED, and RRVIF require 2, 9, 2, 9
and 2 reference data, respectively. So the proposed algorithm
requires a similar amount of reference data as compared to
existing RR algorithms but attains much better performance.
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Fig. 4: The 3D synthesized image (a) with strong geometric
distortions from IRCCyN/IVC database [7] and corresponding
separated predicted (b) and disorder residual part (c) using the
free-energy-principle-based RRVIF [29] IQA algorithm.

Fig. 5: The relationship between the proposed algorithm and
the parameter λ to judge the quality of 3D synthesized images.

IV. APPLICATION TO QUALITY ASSESSMENT OF
3D-SYNTHESIZED IMAGES

Similar, to the SC images, free-energy-principle-based IQA
algorithms, separate most of the information of the regions
with geometric distortions of 3D synthesized images into
disorder residual part, as illustrated in Fig. 4. Consequently,
assume geometric distortions do not contribute significantly
to the overall perceptual quality. Contrary to this, geometric
distortions are the prevailing distortions in the 3D synthesized
images [7] and it significantly degrades the overall perceptual
quality.

Our proposed quality metric has the ability to capture the
geometric distortions, and thus we further applied it to the
recently constructed IRCCyN/IVC database [7] for examining
the quality of 3D-synthesized images. The IRCCyN/IVC [7]
database has 96 number of images. Among these 96 images, 12
are reference images and other 84 images are the synthesized
views. The geometric distortions are predominantly present in
these 84 DIBR-synthesized views.

Similar to the SC images, the proposed algorithm is com-
pared with the 6 FR and 4 RR IQA algorithms specifically
designed for natural images and 4 FR algorithms, specifically
designed for 3D synthesized images (FRDIBR); these four
FRDIBR algorithms are the VSQA [47], 3D-SWIM [48],
MW-PSNR [25] and MP-PSNR [26]. The comparison study
of the proposed algorithm with 14 IQA algorithms are shown
in Table III and the proposed algorithm achieves 0.7145 and
0.4659 value of PLCC and RMSE, respectively. In Table III,
proposed1 and proposed2 represent the performance of the

TABLE III: Simulation results comparison of the proposed
algorithm with existing IQA algorithms for IRCCyN/IVC [7]
database. Here FRnatural and FRDIBR represents the FR
algorithms designed for the natural and the 3D synthesized
images, respectively. While RRNatural suggests the RR algo-
rithms designed for the natural images. In each category best
performances are denoted with the bold-faces.

Metric PLCC RMSE

FRNatural

PSNR 0.3976 0.6109
SSIM [9] 0.4850 0.5823
IGM [28] 0.4325 0.6003

GSIM [12] 0.5246 0.5668
GMSD [13] 0.4077 0.6080

VSI [45] 0.6667 0.4963

RRNatural

OSVP [15] 0.4767 0.5853
FEDM [27] 0.2252 0.6487
RRED [17] 0.4072 0.6081
RRVIF [29] 0.5953 0.5351

FRDIBR

VSQA [47] 0.5742 0.5451
3D-SWIM [48] 0.6584 0.5011
MW-PSNR [25] 0.5622 0.5506
MP-PNSR [26] 0.6164 0.5238

Proposed1 0.7145 0.4659
Proposed2 0.7523 0.4386

proposed algorithm for 3D synthesized images with similar
parameters (λ, α, β, and γ) as used for judging the SC images
and optimized parameters, respectively. From Table III, one
can observe that

1) the existing free-energy-principle-based IQA algorithms
(IGM [28], FEDM [27], and RRVIF [29]) ignores the
impact of regions with geometric distortions and can not
catch geometric distortions and subsequently, achieve a
much lower value of PLCC as compared to the proposed
algorithm.

2) the existing FR and RR algorithms designed for natural
images perform poorly for 3D synthesized images due
to the different characteristics of these natural images
as compared to the 3D synthesized images. In natural
image category, VSI [45] algorithm achieves the highest
value of PLCC, which is much lower than the proposed
algorithm.

3) two state-of-the-art and widely-used IQA algorithms;
namely SSIM [9] and GMSD [13] perform poorly on
3D synthesized images, with PLCC value less than 0.5.

4) We have also applied recently developed RQMSH [22]
algorithm to judge the quality of 3D synthesized images
and it can only able to achieve 0.6216 value of PLCC,
which is much lower than the PLCC value achieved by
the proposed algorithm.

5) although, the proposed algorithm is an RR metric in
nature but it is able to achieve considerably higher per-
formance than the FR algorithms specifically designed
for 3D synthesized images.

A good quality metric should not be sensitive to any
parameters and its performance should not vary significantly
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with a slight change of the parameters. In Fig. 5, the de-
pendency of the proposed algorithm for judging the quality
of 3D synthesized images on threshold λ used in equation
(1) is shown. From this figure, we can see that the proposed
algorithm does not significantly depend on the parameter λ.

These results further demonstrated that the proposed quality
metric is not only capable of capturing the structural distor-
tions but also can capture geometric distortions. Of this ability,
our quality metric also can be used to measure other geometry-
type of distortions. The proposed algorithm can be seen as a
further step towards forming a universal IQA algorithm, as it
can be applied to judge the quality of images with different
characteristics.

V. CONCLUSION

In this paper, we have addressed the issues associated with
the free-energy-principle based IQA algorithms for objectively
assessing the quality of SC images. These IQA algorithms
treat textual regions in such a way that these regions do not
play an important role in evaluating the quality of an SC
image. This hypothesis is found to be untrue, which makes the
performance of these algorithms poor for evaluating the quality
of an SC image. With this in view, we have proposed a new
reduced-reference IQA algorithm for SC images based upon
more perceptual relevant prediction model, which considers
the importance of textual regions during quality evaluation.
From experiments, it is validated that the proposed algorithm
has a better ability to efficiently quantify the quality of SC
images as compared to other recently developed reduced-
reference IQA algorithms. Furthermore, our proposed quality
metric is also very effective in assessing the quality of 3D
synthesized images, because of its ability to capture geometry-
type of distortions, and this implies the underlying utility of
our proposed metric.

Furthermore, it is worthy to mention that, in reality, dur-
ing the transmission, these screen content images might be
contaminated with several distortions (for example, JPEG
compression noise) and before transmission (in encoder side).
That is, we cannot clear what kind of distortion will be
associated with the screen content images and what will be the
level of distortion. So in encoder side, we have the information
of reference image and no information about the distorted
image. In this scenario, we can send very little information
(32 bits) about the reference image, and in decoder side, we
can decide the quality with the help of this information and
distorted image.
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